embedding
¤
This module defines protocols and concrete implementations for embedding models used for text representation.
EmbeddingModelLike
¤
Bases: Protocol
A protocol that defines the methods and attributes that an embedding model should implement.
tokenizer
property
¤
tokenizer: TokenizerLike
Returns:
-
TokenizerLike–The tokenizer used by the model.
SentenceTransformerEmbeddingModel
¤
An embedding model that uses the SentenceTransformer library.
It implements the EmbeddingModelLike protocol.
Attributes:
-
model_name(str) –The name of the model to use.
-
use_gpu(bool) –Whether to use the GPU for inference.
-
model(SentenceTransformer) –The SentenceTransformer model.
Parameters:
-
model_name(str) –The name of the model to use.
-
use_gpu(bool, default:False) –Whether to use the GPU for inference.
tokenizer
property
¤
tokenizer: PreTrainedTokenizerBase
Returns:
-
PreTrainedTokenizerBase–The tokenizer used by the underlying model.